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Short description.

This paper describes the main characteristics of the root lines of
polynomials with complex coefficients. Root lines are defined as
the geometric loci of the roots of the real, respective imaginary
part of the polynomial. A graphical representation of these lines
offers a clear picture of the positions of the polynomial’s roots.
The coordinates of various points of the root lines can be
obtained by use of a computer program. Each root line leads to a
given root, this way the polynomial can be solved and graphically
represented.
A short description of the rules of variation and properties of
these root lines follows depending on the position of the roots of
the polynomial. This study contains many numerical examples
which show not only how the root lines, but also the polynomials
with complex roots and coefficients work, how they can be
studied, transformed and solved.




A. Introduction

This study is the continuation and completion of a
former study about the root lines presented at the
27-th ARA Congress in Oradea, Romania, on May 29
— June 2, 2002.

Length of the papers was then restricted to 5 pages,
therefore some observations in that study could not
be mathematically proved or demonstrated.

This paper presents all those observations and new
explanations regarding the properties of root lines.




B. Importance of the root lines.

Root lines are characteristic for polynomials with complex roots. A
polynomial of degree n has n roots and all roots can be complex.
According to some scientific works the concept of complex roots has a
particular importance to the physical and engineering sciences.

See Reference [4] Volume I, for the list of such cases.

The same [4], on page 413 and ff. also presents some curves which are
root lines, but are called by the author u(x,y) = ¢1 and v(x,y) = ¢2. (py and
v are obviously the real and imaginary part of the polynomial).

The name “root lines” of this theory is given by me, and probably is not
found in any other book or article.

In the same chapter of that book [4] is also mentioned that the angles
between these curves at a multiple root are equal.

It explains this with the vector dot product of the gradients.

Present study gives a more simple explanation for this.




C. The basic form of a polynomial is:

P,(w) =C w"'+C__w"++ C, x+ C,

(1)

where w is the independent variable of the polynomial which can be a
real or a complex number; regarding w see also Par. H.
The coefficients C, to C, are complex or real numbers.

D. Roots of a polynomial.
Real roots.

Roots (or zeros) of a polynomial are those values of the variable w for
which the polynomial’s value (both the real and the imaginary part)
reduces to zero.

If wis a real number and P(w) is represented along a straight reference
line, then the roots are points where the curve crosses this line.




E. Complex roots of a polynomial.

If we compare polynomial X?—9 with x2+0 then the condition P=x%2—9=0 can be written
also x*= 9 and hence x=+3 or x=-3, so this polynomial has two real roots where the
curve intersects the Ox line.

The polynomial P = x* + 9 on the other hand, as we can sec from Fig. 1 has the minimum
value for x = 0 but it never reduces to zero. See Fig. 1. From the condition x2+9 = 0
results x2 = -9 or x = 3_/—1. But we cannot extract the square root from —1!

So we reach to the notion of complex numbers which have the form a + bi wherea and b

Y, N\
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Polsnomial x<-1 . Polynomial x3+1
Fig. 1
are real numbersandi= /-1 is the imaginary unit.
Then the number of roots of a polynomial is completely solved: Any polynomial has n
roots which are either real or complex. Actually the real roots can be considered as

complex numbers with b = 0. '




F. The second basic form of a polynomial
If all robts of a polynomial are known, then the polynomial can be written in
another basic form
PR(W) = (W = W, )(W = Wy)... (W = W,) (2)
Where w,, w,, w, are the (complex) roots and the polynomial in form (2)
obviously reduces to zero if w is equal with one of the roots.

If the mathematical operations are performed, then (2) reduces to (1),
because all operations are unique.
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G. Independence of the roots and root lines from the reference
axes.

This rule is very important for the study of the root lines.

In relation (2), if we choose any point M(x,,y,) and calculate the value of the polynomial for this
point M, then we chooses other two reference axes (Ox, Oy), the value of the polynomial in the
same point Mwill be the same.

Proof: If we use Form (2) for the polynomial, then each factor is a difference of two distances (%,
and w;) and both of which is measured from the same axis, so the difference remains the same.

This rule can be automatically extended to the root lines. A root line constructed in one system (of
Ox, Oy) axes remains the same if the axes are moved because each point of the root line is a root.
On the other hand coefficients of a polynomial change if the reference axes are moved.




H. Representation of the roots and root lines of a polynomial.

The real roots of a polynomial are represented along the Ox axis. The imaginary component bi of a complex
root is assumed to be perpendicular to the real axis. So a complex number a + bi is a vector whose components
define the complex variable w = a + bi = X + vi then defines a Complex Plane (See Fig 2)

Observation.

Fig. 2 has a tri-dimensional representation. The complex variable having two components (parts). X and v, it is
natural to assume that the function P{x+vi) = u+vi has also two components u (real part) and v (imaginary part)
which are in general mof equal with x or v, so it is logical to represent them in a third direction, perpendicular to
the Oxv Plane, ie. in direction z. Therefore it is better to call the complex variable x + vi w and nof z.

be represented as two surfaces, each point of which has a value in direction z.

Besudorasl plane
Plans of polynoonial
&t bl Tromn real axie

The two parts of the function P{w) will be assumed then to have direction z.




1. Points of root lines can be obtained by substitution of the complex variable in the
polynomial.

If we substitute the complex variable w = a + bi in a polvnomial P,, then in the same point of the
Complex Plane we will obtain two values: u an vi. These values « and v are assumed to be vertical,
i.e. perpendicular to the complex plane Oxyv in the direction of the Oz axis (See Fig. 3)

The imaginarv unit i only verv rarely disappears. Therefore all terms multiplied by i added up give
an imaginary part noted generally with v. The other terms (without i) give the real part noted .

If we substitute w = a + bi = x + vi in the polynomial and give b a numerical value, but leave x
variable, then obwiouslv remain just the terms with x unknown. These have the powers 0 to n. All
these terms form than two polymomials in x, one multiplied by i (Imaginary Part), and another
withowt i (Real Part). They correspond to the line at distance b (b can be chosen numerically) one
being the real, the other the imaginary part). If these polvnomials are solved, they give » points for
the root lines of the real part and n for the imaginary part. (See Fig. 3b)

Only the real roots have to be calculated, the complex roots are discarded being outside of the line

at an imaginary) distance.

Y P(a+bi)=u+ vi

Line u(x) + 1(x)

bi
O X
Fig_3b




J. Different possible positions of the Polynomial Center.

The polynomial centre was defined in the first part of this study (in 2002) as the
geometrical centre of all roots both in direction x and vy. (See [7] Par. (2), Pg. 841)

In case of a single multiple root (i.e. there are no other roots than the multiple root) all
root lines are straight lines which intersect where the multiple root is. There then both the
real and imaginary part reduce to zero (so this is a complex root) and the polynomial
center is also there (all roots are concentrated in one point).

So in this case all root lines pass exactly through the polynomial center and they are
straight lines and coincide with the asymptotes.

In case of circular (binary) polynomials in the form w2 — 1 the polynomial centre
coincides with the center of the circle on which the roots are, this being the besr
approximation for the action of all roots.

More about such polynomials see [7]. Par 5A2., Pg 843.

For other polynomials the asymptotes correspond to w®because the other terms for high
values of w are negligible against w2 and therefore this case, especially for points far
from the center— the Polynomial Centeris similarto (i.e. the best approximation for) the
case of a multiple root. Itis also an invariant of the polynomial and depends on all roots.
All practical cases which I studied confirmed this hypothesis.

There is however also a rigorous mathematical proof, but it is ratherlong to be included

in a so short study.
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K. Solving polynomials.

To solve polynomials even with complex roots is simple if there is an adequate method and computer program.
Such a method is Newton's method in the complex domain.

In order to see how this method works, let’s see first Newton's method in the real domain.

According to the real domain method, for a given x value, the polynomial’s value z = P(x)

LZ

8]
Fig 4
: .. dP(x) a= .
and the value of its derivative is 2" = e = E» are known (see Fig. 4).

But z° is the trigonometric tangent of the geometrical tangent to the polynomial’s curve. Then the point where
z
the geometrical tangent crosses the Ox axis will be at x —_ — . This is now an approximation closer to a root of
Z
the polvnomial. In many manuals i. is noted with % (function f and its derivative ).
-




K. Solving polynomials (Part II: In the complex domain)
In the complex domain, the function with a complex wvariable is

f=u+wvi and its derivative is
ff=u ++1i where f.u and v  are derivatives of f, both with respect to x.

If we divide f with f* according to the rule of division of complex numbers we obtain

F o+ uutw' | va'—uy'

= = — =i
) b} -
Foow'tvio w" vy, w4y

The obtained two fractions subtracted from an initial value of an arbitrary complex number

w = X + vi give a new approximation of w. This is then repeated until value of — becomes
negligible.

I B. Moore in [1] doesn’t mention the name of Newton. He calls the above approximations, i.e. the

wvalue of ;'f—| ‘steepest descent vector® (s d v) but arrives to the same expression as given above.

For the s.d.v. see also [7] Par. 6A, Pg. 845

The above relation inserted in a computer program gives after a few steps value of one root. Then a
synthetic division has to be performed, that means the polynomial is divided by w — w; where w,
is the value of the calculated root. After this the polvnomial’s degree reduces by 1.

When n = 1, the root’s value is calculated directly.




K. Observations regarding this method.

1.) The program works well also for polynomials with real coefficients or real roots, but
then the imaginary part of the coefficients has to be set to zero.

2.) Whereas Newton’s method in the real domain works only if the initial guess 1s close
to a root, there is no such restriction in case of the program in complex domain.

3.) If the program enters in an ‘endless loop’ (it happens extraordinarily seldom), then
increase initial guess, or change sign of the imaginary part (i.e. change the initial guess
1+ito 10+ 101, 100 + 1001, 1 —1, 10 — 101, 100 — 1001 etc)

Note.
The size of this paper doesn’t permit to give a complete listing of this or other programs.

If you are interested in more details, please write to my e-mail address.
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L. Rotation of the asymptotes of a multiple root multiplied by a complex constant.
A polynomial which has only one # times multiple root has the form.

P.=w"=(x+bi)* orinthe trigonometric form:
P, = p™(cosng + isinng)

b
If this expression is multiplied by a complex number in the form a+bi=a (1 + ki) where k==
a

=tana o =tan"!(k) (using for the argument of the complex multiplier 1 + ki the letter a instead of
@ in order to make it different of the multiple root) then results

(1+ ki) w* = cos ng — ksin n@ + [sinne + kcos no] i
Equating the real part and the imaginary part separately with zero, for the real part we
obtain:

tanncp=%=tan(90°—a) orng =90°—a or
90° —

@ = va +k1£ (3a)
n n

__—__‘




L. (continued) Same as above, but for the Imaginary Part. The term of multiplicity.
For the Imaginary Part we have:

—c e

tanng =-k=-tana or npg=-a or @=— +ki — (3b)
H 4]

Where: k1 =1, 2, ...n~1 (all integer numbers).
Relations (3a) and (3b) show directions of the lines along which the Real or Imaginary Part of w® is equal with
zero, 1.e. their root lines.

@y and @; are measured from the reference axis Ox

T

The term k1 —  in these relations is called the term of multiplicity, because it adds to ¢ or ¢; n— 1 more
4]

directions of the root lines.

Proof*

T
If @ or @;is substituted in the expression of P, =w=2 then the arguments ¢, + k; — or
n

b

@; + ki1— become nec+ @ resp nei+ @, but if for ngr or ngs P, =0 then it will be zero also for ¢+ ® resp @it
n

T

Other method:

Product of two complex numbers = RnoRa[cos(no+a) + isin((ne+ao)]

B 90° — T
Real Part is 0 for np+a=90° or@gp= — +k; —
e} ¥
. i —& T
Imaginary Part is 0 for no;+a.=0 Or ;= — + ki —
n n



M. Consequences of relation (3a) or (3b)
Consider a polynomial which has a triple root in the origin and another root at -3 — 2i. (See Fig. 5). It can be written as
P, =x3(x + 3 + 2i)

In the originx =0 and the parenthesis expression

reduces to the complex constant 3 +2i=3 (1 - %i )

o 2 - {(2)
50 in this case k= 5— = 6666 o=tan ! sz 33.690067°

This is exactly the case presentedin the previous paragraph (M.), i.e. the complex multiple root x* (= w?) is multiplied by the
complex constant 3 + 2i.
Direction of the real root line will be then given by the angle ¢, equal with (using relations from Par. L.):

90 -a

+k; §= 18.77°+60° where a=tan ! (é) 33.690077° n=3 (multiplicity ofthe directions) k; =0, 1,2,3




N. Observations for relations (3a) and (3b)

Note that in these relations 7 is the multiplicity, i.e. the number of roots in the multiple root (in this
case n = 3) and nof the order of the polynomial (which in this case is 4!)

Hence results that this polynomial has root lines which in the origin O (where in this case the triple
root is) are rotated by ¢r and @; and to these directions are added two (in general n-7) more, so the
total of directions in which the polynomials real or imaginary part is zero is equal with n, i.e. the
order of multiplicity (in general n and in this case 3) of the root.

The factor 3 +2i is the influence of the other root on the multiple root. It causes a rotation of all
root lines which pass through the multiple (in this case triple) root by o, resp ¢; but the interval

T T T
between the lines remains always the same [kl g) because of the term k; g in general k, —
‘ n

2 b
Further it is easy to see that the complex multiplieris 3 +2i =1+ 5 i=a [l + —J and
a

b
o = tan! (—] where a is the Real Part and b the Imaginary Part of the simple root.
a

In this concrete case (see Fig. 5) it was found that ¢, = 18.77°
This is the angle of the tangent to the first real root line with the Ox axis. The other root lines in the

: : T
mss  Same point are at equal intervals of —



O. Case of several multipliers.

In case that the polynomial has more than one complex roots in different points, these can be
multiplied as complex numbers and their product is

pip2 p3...[cos(art axt ...) +isin(out oot ...)]
The arguments of the roots can be added up to
Ot = tan ! (k) + tan ! (k2)...

Each argument is measured from the positive Ox axis.
In case of a Root Number k, best method is to set this root at the origin, but so that the relative

position (i.e. distance) between the roots remains the same. (The simplest solution is then to move
the reference axes and not the roots!). All roots have to enter in the sum, except the Root k.

If there is a multiple root, it is like several simple roots added up, i.e. the argument of the multiple
root is multiplied by the number of multiplicity of the root.

The total argument o is then used in the relations of Par. M. (instead of o).

This theory shows that the root lines at each roof of a polynomial are rotated by a value which
depends on all other roots of the polynomial. This has some similarity with a system of celestial
bodies (like the sun and its planets) where each planet influences the others, but in case of a
polynomial the influence depends only on the angle of the root, relative to the other root. The

angles of all roots are then added up numerically.




P. Rotation of the root lines at a simple root.

With the same relation as in Par. M. to O. we can calculate also the rotation of the
root lines at the simple root 3 + 2i.

The 3 times multiple root is equivalent with three simple roots. (See also
observations in the previous paragraph O. regarding multiple multipliers).

For one root we have

2
o = tan™ LEJ =33.69°
2
For three roots  0ro1=3 tan™ | 3 | =3-33.69=101.07".
90° —a, 90-10107
Theng:= ", =117

See again Fig. 5.

_____—_‘




Q. Polynomials multiplied by a complex number.

The first coefficient (i.e. that of x®) is in most cases of polynomials equal with 1 and
Cuy = 0 (i.e. C, has no imaginary part). If a polynomial is given in form (2) and the
mathematical operations are performed to obtain form (1), then C, will result = 1 (real),
even if all roots are complex.

So if Cyy # O then it can be assumed that the polynomial was multiplied by: Cax + i Cayy.
This complex factor then produces a rotation of the asymptotes which can be calculated

G
with Rel. (3) where in this case: k= C”-’” o = tan ~! (k).

R. Other method to eliminate rotation.

Or, another (better) method is to divide the whole polynomial by the first, complex
coefficient Cpx + 1 Cpy. After thisdivision Cpx=1 Cyy=0 and the polynomial will be a
‘regular’ polynomial.

P.=d.Ps d,=divisor P4dividedpolynomial
The roots remain after divisionthe same, because the polynomial is multiplied justby a
constant.
The Polynomial Center can be calculated from the divided polynomial. It is the same for

both polynomials, because it is a function of all roots, and these are the same for both.




S. Numerical example for the previous case:
As an example consider the following polynomial, given in Ref [5]

2x4-30x3+163x2-1773 + (3x* +2x3 +472x +4208)i

In this case Cyyis not0, k= %= §-= 1.5 o =tan -1(1.5) = therefore all asymptotes are rotated by
90" —tan™'(1.5)
Qr = 4 = 8.422517°

o is measured from the Ox axis.
T. Dividing the polynomial

If the whole polynomial (i.e. all coefficients) are divided by the first coefficient, i.e. Cx4 +Cya 1 =2 +3ithen we
obtain the following polynomial:

13x*—54x3 + 326x2+1416x+9078 + (94x3 — 489x2 + 944x +13735)1 or
x4 —4.15384815x3+25.076923x2+ 108.923077x 698.307692 + (7.230769x3 - 37.615385x2 +

72.615385x+1056.5385)i.

U. Characteristics of the reduced polynomial

This polynomial has the asymptotes according to the general rule (first real asymptote at zi) and the same
n

roots. Hence results the polynomial centre as:

_GO-D_ S 384615 PolCtry= -2 D= 94— 807692
nCx(n) 13-4 nCx(n) 13-4

. PolCing=



V. Sum of the angles of the roots of a polynomial related to a point M on a root line
of the Real Part.
If the sum of the angles of all roots of a polynomial related to a point M is equal with 90° then that

point is situated on a root line of the Real Part.

W. Sum of the angles of the roots of a polynomial related to a point M on a root line
of the Imaginary Part.

If the sum of the angles of all roots of a polynomial related to a point M is equal with 90° then that
point is situated on a root line of the Imaginary Part.

X. Proof of Par. Vand W.
If the point M is placed in the origin then the value of the polynomial in point M is equal with
P=(-a; —byi)(-a> — b2i) (—ax—bai) ...
Or written in trigonometric form
P = pip2 p3...[cos(@i1t@2+ ...) + i sin(Qi @2t ...)]

From this expression it is obvious, that if the sum of the angles @1, 2 . ¢u is equal with 90° then the
Real Part of the polynomial is zero and if the sum is 0 then its imaginary part is zero (in point M). J




U2. Consequence of Paragraph V and W

If all roots of a polynomial are rotated by an angle ¢ as a rigid body around the
polynomial centre, then if ¢ points in a principal direction then all root lines of
the polynomial rotate by the angle ¢ but their status could be reversed (i.c. a root
line which was of the real part becomes of the imaginary part and vice-versa) if
the direction defined by ¢ corresponds to another principal direction.

V2. Proof of paragraph U2.

Because of the rigid rotation, the angle at which a root is seen remains the same
as before, but the angle ¢ is added to it n times (for each root). This additional
value of ny may cause that the total angle to be a multiple of 90°.

In case of Fig. 6 the rotation being 54°, ny = 5.54 = 270° = 180° + 90°. The 180 °
doesn’t change anything, but the 90° changes. If sum of the angles initially was 0,
now it becomes 90°, and if it was 90°, now it will be 180°, that means all root
lines will change their status.




W2. Example for paragraphs U2-V2.

As an example consider a polynomial with real rootsat x =1,x=3 andx=6 and a pair of complex roots
x =8 + .51 and 8§ — .5i. This polynomial has the equation:

x5 —25x% +225%x3 —903x2 + 1566 x — 864+ (—6x4 +106x3 — 622x2 + 1350x - 828) i

If all roots are rotated by 54° around the polynomial centre (at x = 5.2) in positive direction then the roots will
be:

2.7313019-3.397871i 3.906872445 —1.779837386i

5.6702282 + 6472135951 6.4412902 +2.55914921i and

7.250307204 +1.971354968 1

These roots correspond to following polynomial (using Rel. [2])

x3-26x*+276.3176748x3 -1572.5094075x2 +4222.1774568x —4701.3827155856
+(~18.2127322x3 + 288.704436236x2-1569.03213486x + 2973.05628351) i

W3. Characteristics of the rotated root lines

This polynomial has the same root lines as the previous one but the status of the root lines are reversed, i.e. if a

root line was before real, now it will be imaginary and vice-versa.

See also the proof at the beginning of this paragraph.

Observe that the rotation of 54° is an integer multiple of Eﬂ; = 18 which is the interval between two different
2n

root lines (one of the real part and one of the imaginary part)

See Fig 6. and Fig. 7. for the initial and rotated polynomial.
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Fig. 6

a. The original roots on the Ox axis




b. The roots rotated by 54
Fig. 7
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